
Where do behaviour models come from?

Sebastian Uchitel
Department of Computing
Imperial College London

Collaborators: R. Chatley, H. Foster,
J. Kramer, and J. Magee

Institut d'Informatique, University of Namur, Feb. 2004

The Problem

I’m a practitioner -
get me out of here!Models!

Why models?

Pre-development analysis of behaviour
– Prevent consequences
– Early detection -> cheaper fix

Traditional engineering approach
– Abstract & Precise
– Amenable to analysis.
– Complexity: Model << System.

Costs < Benefits

Models for Concurrent &
Distributed Systems

System structure:
– Autonomous components.
– Interactions between them.

Mathematical foundations
Amenable to rigorous analysis.
Effective tool support for analysis
– model checkers
– theorem provers

Successful in uncovering design flaws.

Why NOT models?

Require expertise
– Notations
– Semantics.

Construction effort is big.
No benefits until construction is finished.
Costs > Benefits

Practitioners prefer
informal notations

Research Goal

Support the construction and
elaboration of behaviour models

Behaviour Model

Partial
Specification

Automated
Construction

A gap in specification

Add information

Automated analysis

Validation

What notation?
User friendly vs.

Rigorous Semantics vs.
Expressiveness

What is a “gap”
How do we detect gaps? How?

Assumptions?

What kind?
Semantics?

How?
Same as spec?

Our work: Past, Present and Future

Behaviour Model

Partial
Specification

Automated
Construction

A gap in specification

Add information

Automated analysis

Validation

Scenario notations
Negative Scenarios
Scenarios & ADLs

BPEL4WS

Synthesis

LTS
Partial LTS

MTS
Stochastic Models

Model-based
Animation

Implied scenarios
Declarative properties

Tool support
Model checking

Basic Message Sequence Charts (MSCs)

ITU Z.120 & UML
Interaction-based
Partial order semantics.
Synchronous communication

Start, Pressure, Query, Data, Command, Pressure, Stop.
Start, Pressure, Query, Data, Pressure, Command, Stop.

Start

Sensor Database Actuator

Pressure

Control

Query

Data
Command

Pressure

Stop

High-level MSCs

Initialise

StopAnalysis

Register

Start

Sensor Database ActuatorControl
Initialise

Query
Sensor Database ActuatorControl
Analysis

Data Command

Sensor Database ActuatorControl
Stop

Stop

Pressure

Sensor Database ActuatorControl
Register

High-level MSC Semantics

Initialise

Start
Pressure

;Register

Query

Data
Command

;Analysis

Pressure

;Register

Stop

MSC Spec.
Initialise

StopAnalysis

Register Semantics

Sensor Database ActuatorControl

Start

Sensor Database ActuatorControl
Initialise

Query
Sensor Database ActuatorControl
Analysis

Data Command

Sensor Database ActuatorControl
Stop

Stop

Pressure

Sensor Database ActuatorControl
Register

Semantics

MSC Semantics (Summary)

MSCs
Semantics

Component
Structure &
Interfaces

System
traces

e.g. start, pressure, query, data, command…

Comps = {Sensor, Database, Control, Actuator}
Database.[query, data, pressure]
Control.[query, data, start, stop]

Semantics

Model Construction Problem

MSCs
Semantics

Component
Structure &
Interfaces

System
traces

Synthesis Architecture model

(||…||)

Preserves
architecture?

Trace equivalence?

Synthesis of Control Component (1 of 3)

Query Data Command

0 1 2 3

Query
Sensor Database ActuatorControl
Analysis

Data

Command

C_Analysis = (Query->Data->Command->End)

Init = C_Initialise,
C_Initialise = C_Register,
C_Register = (t->C_Stop|t->C_Analysis|t->C_Register),
…

τ

τ

ττ
τ

τ

Synthesis of Control Component (2 of 3)

Query Data Command

Start Stop

C_Analysis

C_Initialise C_Stop

C_Register

Synthesis of Control Component(3 of 3)

Control
start query

stop

data

command

0 1 2 3

deterministic Control = Init,
Init = Initialise,
Initialise = Register,
Register = (t->Stop|t->Analysis|t->Register),
...
Analysis = (Query->Data->Command->End),
... /{t}

Semantics

Synthesis Properties

MSCs
Semantics

Component
Structure &
Interfaces

System
traces

Synthesis Architecture model

⊆⊆
(||…||)

Minimal w.r.t
trace inclusion

[FSE’01]

⊄⊄Can have additional
traces!!

Implied scenarios
are unspecified traces that appear
in all possible architecture models

Start

Pressure

Start

Sensor Database ActuatorControl

Query

Data

Command

Stop

Pressure

Implied Scenarios: An Example

Architecture
Model
Trace

MSC Spec

InitialiseInitialise
RegisterRegister
StopStop

AnalysisAnalysis

InitialiseInitialise
RegisterRegister

Initialise

StopAnalysis

Register

InitialiseInitialise

RegisterRegister

AnalysisAnalysis

Start

Sensor Database ActuatorControl
Initialise

Query
Sensor Database ActuatorControl
Analysis

Data Command

Sensor Database ActuatorControl
Stop

Stop

Pressure

Sensor Database ActuatorControl
Register

Start

Pressure

Start

Sensor Database ActuatorControl

Query

Data

Command

Stop

Pressure

Implied Scenarios: An Example

Architecture
Model
Trace

MSC Spec
Initialise

StopAnalysis

Register

Start

Sensor Database ActuatorControl
Initialise

Query
Sensor Database ActuatorControl
Analysis

Data Command

Sensor Database ActuatorControl
Stop

Stop

Pressure

Sensor Database ActuatorControl
Register

Pressure

Implied Scenarios...
Result from a mismatch between specified
behaviour and architecture.
Which one is wrong? Behaviour or Architecture?
– Missing scenario
– Incorrect or too abstract architecture

Implied scenarios are “gaps” in the MSC
specification!

Implied scenarios should be
detected and validated

Implied Scenario Detection

Build model Trace Model T s.t “tr(T)=L(Spec)”
– Ignore component structure
– Non-trivial

• Weak bMSC sequential composition
• Possibly non-regular MSC language

Model check “tr(A) ⊆ tr(T)”
– Declare T as safety property
– Check for reachability of error state in (T||A)

Counter-examples are implied scenarios

[FSE’02]

Implied Scenario Validation

Automated
Construction

Behaviour ModelsImplied Scenario
(A gap in specification)

Add information

Automated analysis

Validation

or x

Positive &
Negative MSCs

[TOSEM’04]

Negative Scenarios

Basic Negative Scenarios
– Allow push-button rejection
– Reject 1 implied scenario at a time
– Insufficient to allow process convergence

Extended Negative Scenarios
– Abstraction
– Scope
– Permit process convergence
– Require “effort” from user.

[FSE’02]

The Whole Picture
Architecture

L(PSpec)
Architecture

Model Synthesis

Trace Model
Synthesis

Constraint
Model Synthesis

Model Check
tr(A||C) ⊆ tr(T)?

tr(A) ⊇ L(PSpec)

tr(T) = L(PSpec)

tr(C) = L(NSpec)-1

L(PSpec)

L(NSpec)

PSpec

NSpec

i ∈ tr(A)\(L(PSpec) ∪ L(NSpec))

Scenarios

Positive or
Negative Scenario

Implied Scenario
A||C ≈tr T?

[TACAS’03]or x

Case Studies

Railcar Transport System
[Harel et al]

B2B e-commerce site of greek
industrial partners
(STATUS project)

Phillips Horizontal Communications Protocol for
new product line of television sets.

Related Work
See workshops at OOPSLA’01, ETAPS’01, ICSE’02,
ICSE’03, and also Dagstuhl Seminar 03371
Implied scenarios: Alur, Leue, Protocol synthesis
community
Expressiveness and Model Checking: Peled, Morin,
Analysis: Muccini, Holzmann, …
Iterative elaboration: Systa et al.
Live sequence charts: Harel, Heymans, Bontemps

Some Limitations
and Open Questions

Implied scenarios address a very specific
aspect of behaviour.
– Are there other drivers for elaboration?

Scenarios are instance-level descriptions.
– Can they be generalised and then used in different

settings?

Synthesis techniques lose the partial nature
of scenario specifications.
– Can we synthesise different kinds of models?

Thank you!

Behaviour Model
Construction and Elaboration

Sebastian Uchitel

Department of Computing
Imperial College London

