

Where do behaviour models come from?

Sebastian Uchitel

Department of Computing Imperial College London

Collaborators: R. Chatley, H. Foster, J. Kramer, and J. Magee

Institut d'Informatique, University of Namur, Feb. 2004

The Problem

Why models?

- Pre-development analysis of behaviour
 - Prevent consequences
 - Early detection -> cheaper fix
- Traditional engineering approach
 - Abstract & Precise
 - Amenable to analysis.
 - Complexity: Model << System.
- Costs < Benefits

Models for Concurrent & Distributed Systems

- System structure:
 - Autonomous components.
 - Interactions between them.
- Mathematical foundations
- Amenable to rigorous analysis.
- Effective tool support for analysis
 - model checkers
 - theorem provers

• Successful in uncovering design flaws.

Why NOT models?

- Require expertise
 - Notations
 - Semantics.

- Construction effort is big.
- No benefits until construction is finished.
- Costs > Benefits

Practitioners prefer informal notations

Research Goal

Support the construction and elaboration of behaviour models

Our work: Past, Present and Future

Basic Message Sequence Charts (MSCs)

- ITU Z.120 & UML
- Interaction-based
- Partial order semantics.
- Synchronous communication

Start, Pressure, Query, Data, Command, Pressure, Stop. Start, Pressure, Query, Data, Pressure, Command, Stop.

High-level MSCs

High-level MSC Semantics

MSC Semantics (Summary)

e.g. start, pressure, query, data, command...

Model Construction Problem

Synthesis of Control Component (1 of 3)

C_Analysis = (Query->Data->Command->End)

Synthesis of Control Component (2 of 3)

Init = C_Initialise, C_Initialise = C_Register, C_Register = (t->C_Stop|t->C_Analysis|t->C_Register),

Synthesis of Control Component(3 of 3)


```
deterministic Control = Init,
Init = Initialise,
Initialise = Register,
Register = (t->Stop|t->Analysis|t->Register),
...
Analysis = (Query->Data->Command->End),
... /{t}
```

Synthesis Properties

Implied Scenarios: An Example

Implied Scenarios: An Example

Implied Scenarios...

- Result from a mismatch between specified <u>behaviour</u> and <u>architecture</u>.
- Which one is wrong? Behaviour or Architecture?
 - Missing scenario
 - Incorrect or too abstract architecture
- Implied scenarios are "gaps" in the MSC specification!

Implied scenarios should be *detected* and *validated*

Implied Scenario Detection

- Build model Trace Model T s.t "tr(T)=L(Spec)"
 - Ignore component structure
 - Non-trivial
 - Weak bMSC sequential composition
 - Possibly non-regular MSC language
- Model check " $tr(A) \subseteq tr(T)$ "
 - Declare T as safety property
 - Check for reachability of error state in (T||A)
- Counter-examples are implied scenarios

Implied Scenario Validation

[TOSEM'04]

Negative Scenarios

Basic Negative Scenarios

- Allow push-button rejection
- Reject 1 implied scenario at a time
- Insufficient to allow process convergence
- Extended Negative Scenarios
 - Abstraction
 - Scope
 - Permit process convergence
 - Require "effort" from user.

The Whole Picture

Case Studies

 Railcar Transport System [Harel et al]

 B2B e-commerce site of greek industrial partners (STATUS project)

 Phillips Horizontal Communications Protocol for new product line of television sets.

Related Work

- See workshops at OOPSLA'01, ETAPS'01, ICSE'02, ICSE'03, and also Dagstuhl Seminar 03371
- Implied scenarios: Alur, Leue, Protocol synthesis community
- Expressiveness and Model Checking: Peled, Morin,
- Analysis: Muccini, Holzmann, ...
- Iterative elaboration: Systa et al.
- Live sequence charts: Harel, Heymans, Bontemps

Some Limitations and Open Questions

- Implied scenarios address a very specific aspect of behaviour.
 - Are there other drivers for elaboration?
- Scenarios are instance-level descriptions.
 - Can they be generalised and then used in different settings?
- Synthesis techniques lose the partial nature of scenario specifications.
 - Can we synthesise different kinds of models?

Thank you!

Behaviour Model Construction and Elaboration

Sebastian Uchitel

Department of Computing Imperial College London

