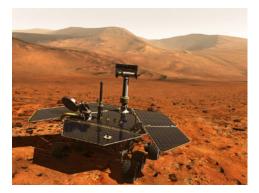
Cuando el perro de Pavlov se robotizó: aprendizaje por refuerzos en psicología, robótica, neurociencias y juegos de Atari

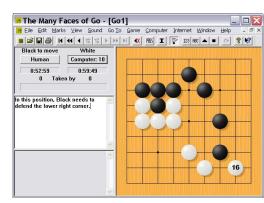
Princeton Neuroscience Institute

Carlos Greg Diuk

Charla de borrachos – 15 de junio de 2012

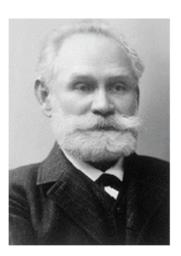
Aprendizaje y toma de decisiones





Aprendizaje (y refuerzos)

- Primeras teorías "modernas":
 - Condicionamiento clásico o Pavloviano.



Ivan Pavlov (1849-1936)

Visión ultra-limitada del aprendizaje, pero funciona. Demuestra que los animales pueden aprender relaciones arbitrarias entre estímulo->respuesta.

Dibujitos: Yael Niv

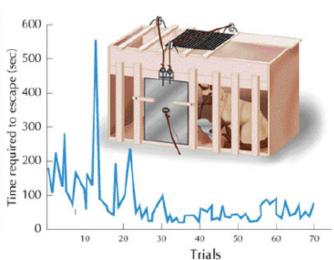
Pero el perro de Pavlov no tomó decisiones

- Hasta ahora no tuvo que hacer nada, no tomó decisiones, sólo salivó porque la campana le recordó el churrasco.
- Agreguemos "control": no solamente estímulorespuesta
- Las acciones que tomamos tienen consecuencias.

Condicionamiento Instrumental/ Operacional

- Thorndike experimentó con gatos hambrientos tratando de escapar de una jaula.
- Midió el "tiempo hasta escapar" como métrica de aprendizaje.

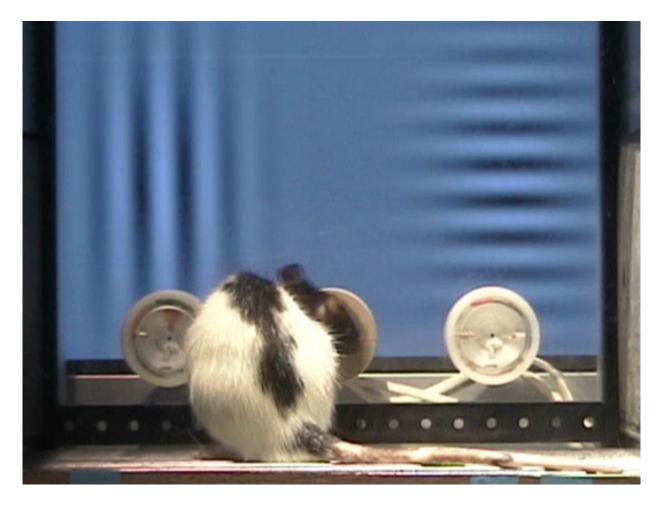
"Curva de aprendizaje"



Edward Thorndike

Diapositiva: Yael Niv

Aprendizaje por Condicionamiento



Cuál es la regla?

Crédito: Reinagel lab, UCSD

Condicionamiento Instrumental

La lección importante a extraer:

Los animales no sólo pueden aprender relaciones estímulo-respuesta arbitrarias, sino también **comportamientos** arbitrarios en base a dichos estímulos.

Crédito: Björn Brembs, FU Berlin

Aprendiendo con refuerzos

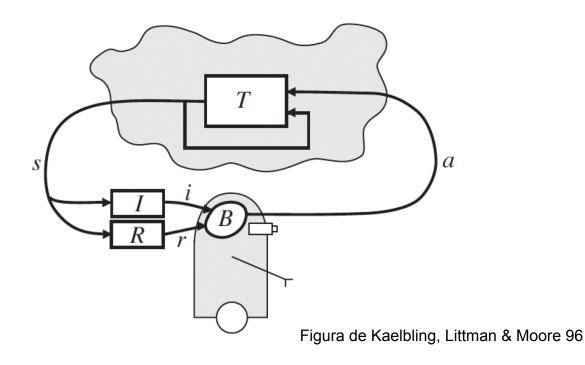
Idea clave de Rich Sutton (1980s):

Para desarrollar un sistema *inteligente*, el sistema tiene que *desear* algo.

Sutton y Barto desarrollan AR computacional

Sistemas que aprenden a fuerza de desear lograr un objetivo

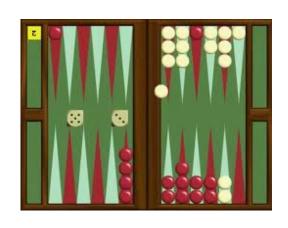
Aprendizaje por refuerzos

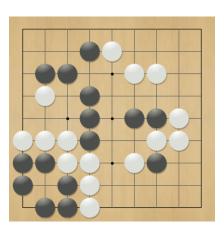


 Problema: transiciones entre estados y refuerzos son desconocidos.

Algunos éxitos

- 1995: jugador de backgammon basado en AR les empata a campeones mundiales.
- 2006-2011: jugadores de Go basado en AR alcanzan nivel de Grand Master en 9x9 y le ganan a otros programas en 19x19.



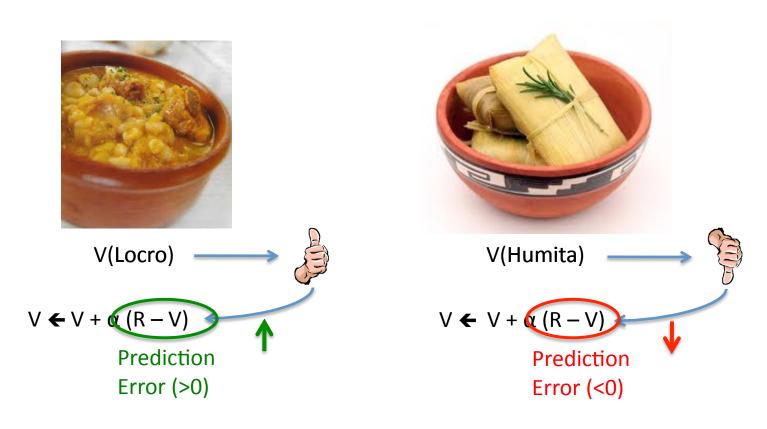


Aplicaciones

Muchas aplicaciones en robótica:

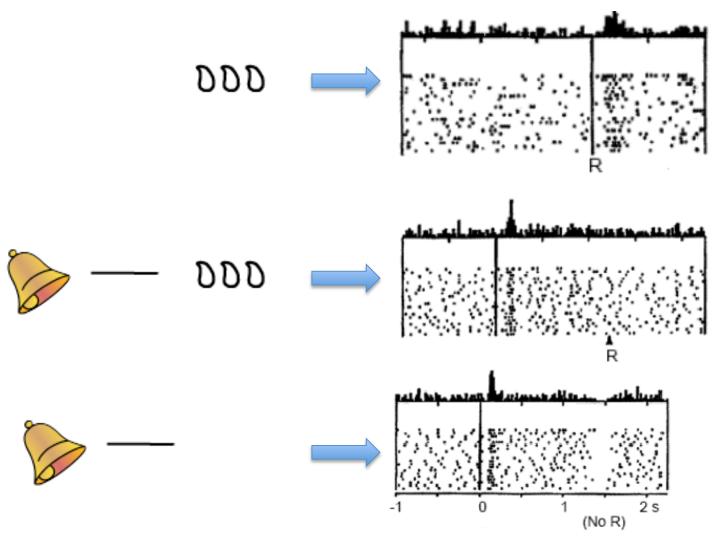
• Juegos para X-Box de Microsoft Research que se adaptan al usuario.

El problema de qué comer



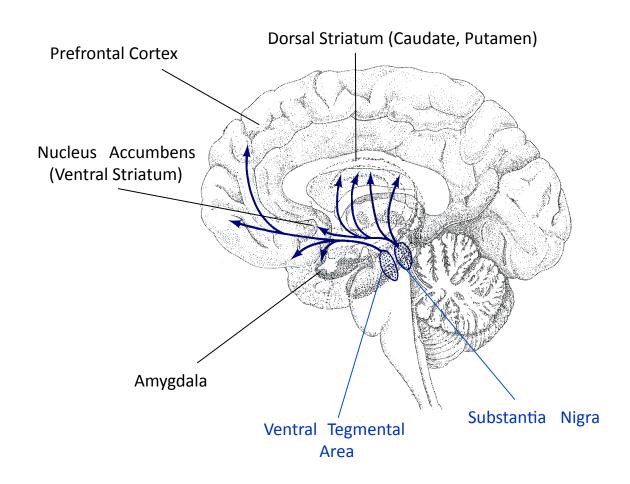
Algoritmo: Temporal-difference (TD) learning

Prediction errors en el cerebro

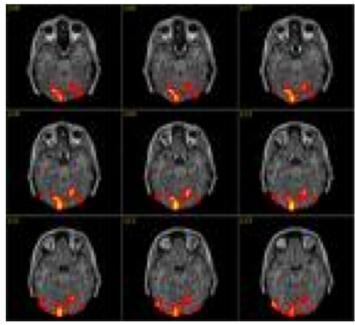


Schultz, Dayan & Montague, Science, 1997

AR en el cerebro: la dopamina

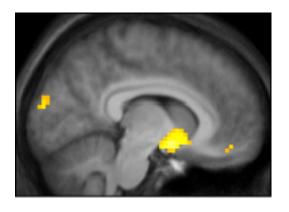


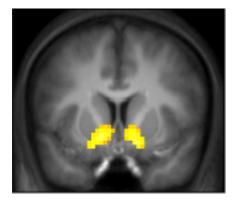
Estudiando AR en humanos...

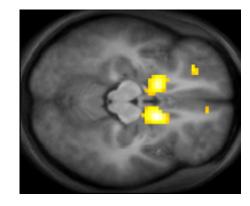


Resonancia magnética funcional (fMRI)

Estudiando AR en humanos...







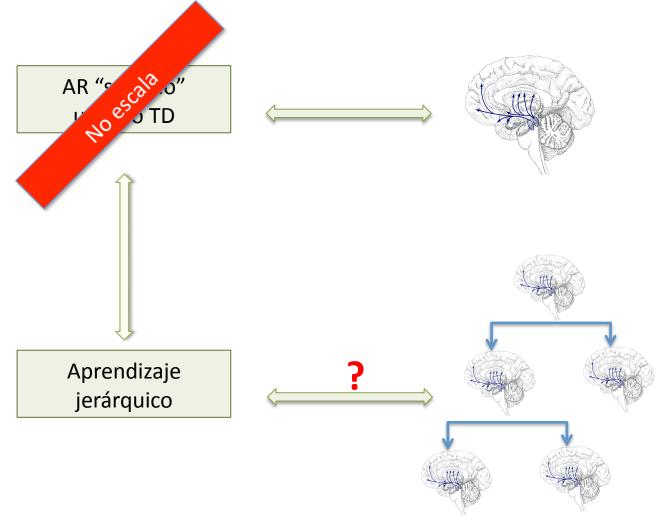
18 Participantes jugaron al juego de "qué comer" (tenían 8 opciones)

Análisis basado en un modelo:

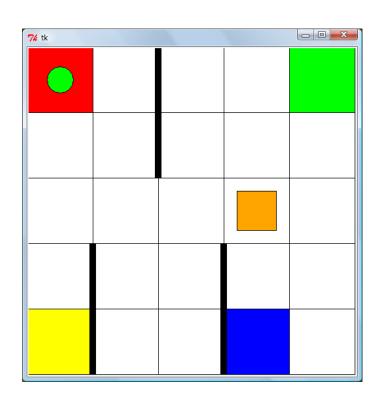
Postulamos que el algoritmo de aprendizaje es TD.

Buscamos áreas del cerebro cuyo patrón de activación correlaciona con Prediction Errors que genera TD.

Problema con TD

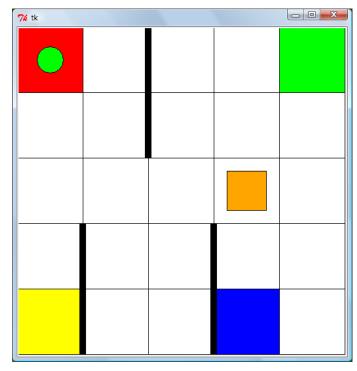


Juguemos un juego



- Pueden elegir entre 6 acciones.
- Cuando el juego se cierre, es porque ganaron.

La maldición de la dimensionalidad

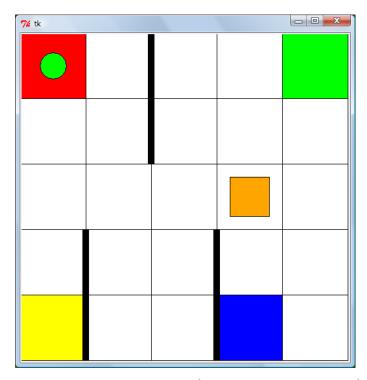


Problem variables	# of states
Taxi location (25)	25

El Taxi Problem (Dietterich, 1999)

S

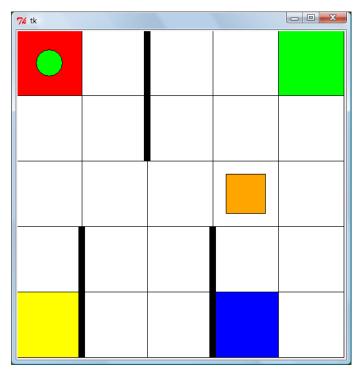
La maldición de la dimensionalidad



Problem variables	# of states
Taxi location (25)	25
Passenger location (5)	25 x 5 = 125

The Taxi Problem (Dietterich, 1999)

La maldición de la dimensionalidad

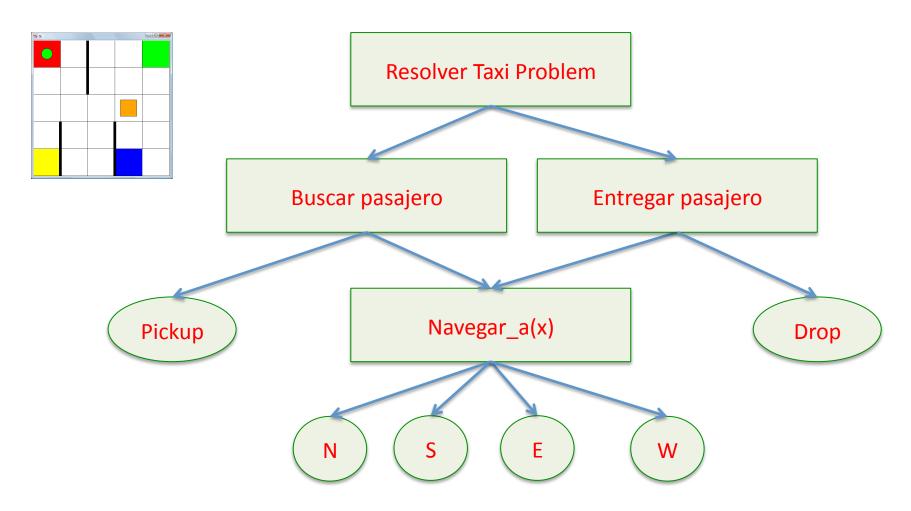


Problem variables	# of states
Taxi location (25)	25
Passenger location (5)	25 x 5 = 125
Destination (4)	125 x 4 = 500

The Taxi Problem (Dietterich, 1999)

Método de aprendizaje	# pasos hasta comportamiento cuasi-óptimo
Temporal-difference simple (Q-learning) [Watkins & Dayan, 1992]	47157

Descompongamos la tarea



Método de aprendizaje	# pasos hasta comportamiento cuasi-óptimo
Temporal-difference simple (Q-learning) [Watkins & Dayan, 1992]	47157
Agregamos jerarquía (MaxQ) [Dietterich 1999, 2000]	6298

Método de aprendizaje	# pasos hasta comportamiento cuasi-óptimo
Temporal-difference simple (Q-learning) [Watkins & Dayan, 1992]	47157
Agregamos jerarquía (MaxQ) [Dietterich 1999, 2000]	6298
Usando un planner (R-Max) [Braffman & Tennenholtz 2002]	4151

Método de aprendizaje	# pasos hasta comportamiento cuasi-óptimo
Temporal-difference simple (Q-learning) [Watkins & Dayan, 1992]	47157
Agregamos jerarquía (MaxQ) [Dietterich 1999, 2000]	6298
Usando un planner (R-Max) [Braffman & Tennenholtz 2002]	4151
Usando un planner y aprendiendo a ignorar variables (Met R-Max) [Diuk et al., 2008]	2246

Método de aprendizaje	# pasos hasta comportamiento cuasi-óptimo
Temporal-difference simple (Q-learning) [Watkins & Dayan, 1992]	47157
Agregamos jerarquía (MaxQ) [Dietterich 1999, 2000]	6298
Usando un planner (R-Max) [Braffman & Tennenholtz 2002]	4151
Usando un planner y aprendiendo a ignorar variables (Met R-Max) [Diuk et al., 2008]	2246
Lo mismo, pero con una jerarquía [Diuk et al., 2006]	319

Las jerarquías ayudan!

La bendición de la abstracción

Jerarquías en el comportamiento humano

Karl Lashley (1890-1958)

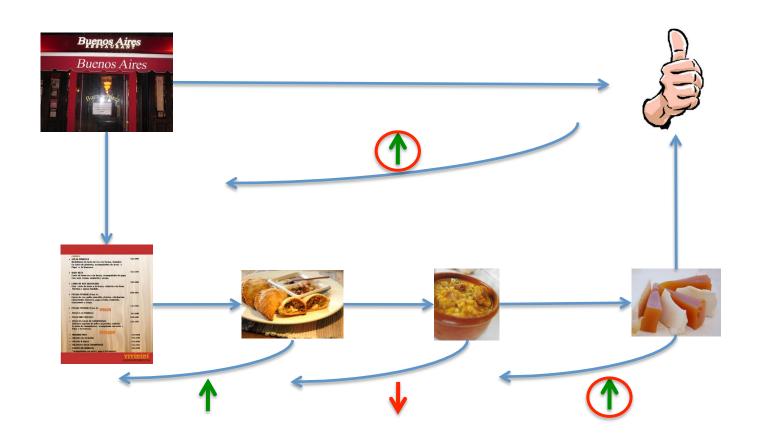
"El comportamiento secuencial no es una cadena de estímulo-respuestas, sino una jerarquía de subrutinas anidadas."

Parte del comienzo de la "revolución cognitiva".

El problema de qué comer

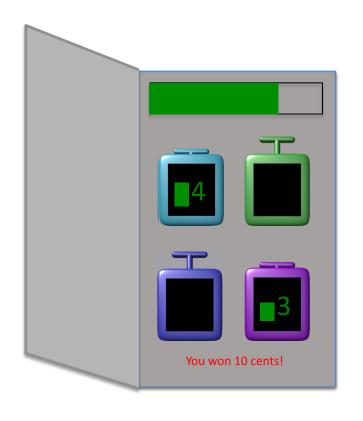
El problema de **dónde** comer

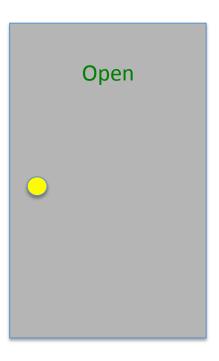
Método jerárquico basado en TD



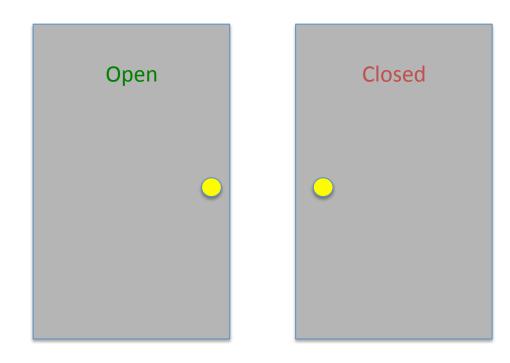
Algoritmo: Options (Sutton, Precup & Singh, 1999)

El problema del Casino

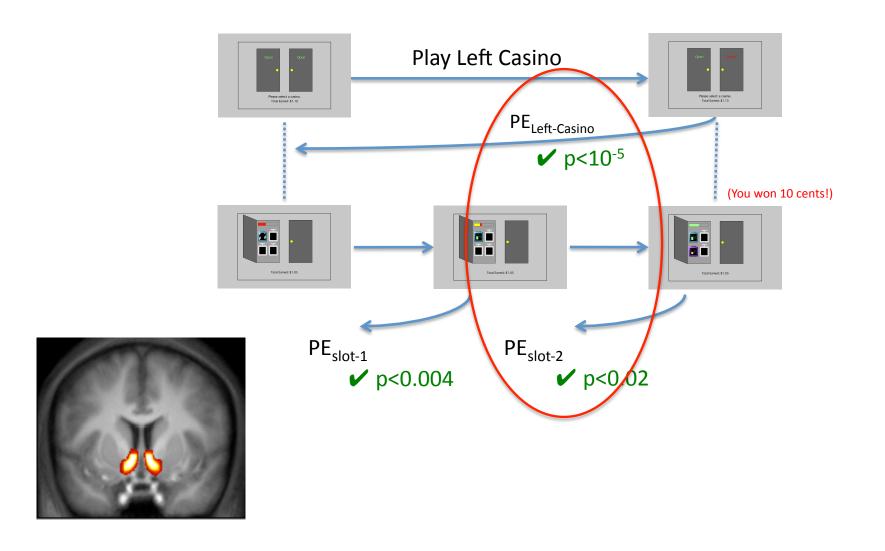




The Casino Task

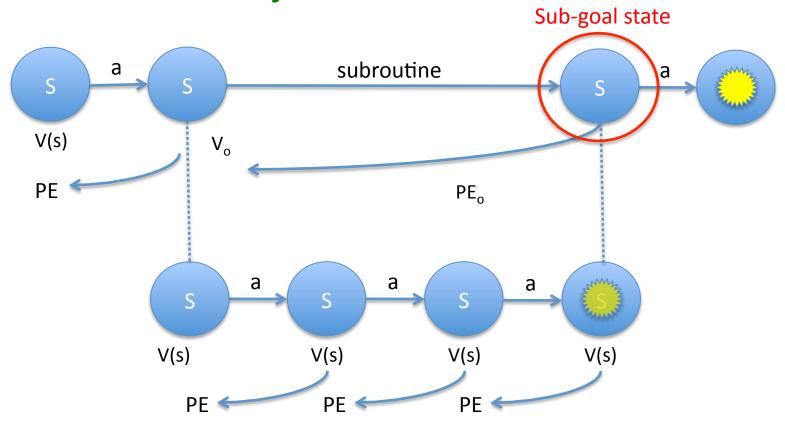


Resultados Casino

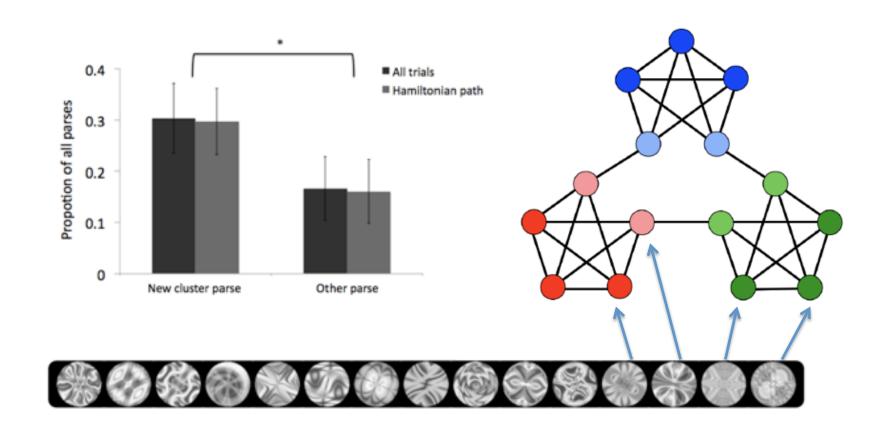


El costo de la abstracción

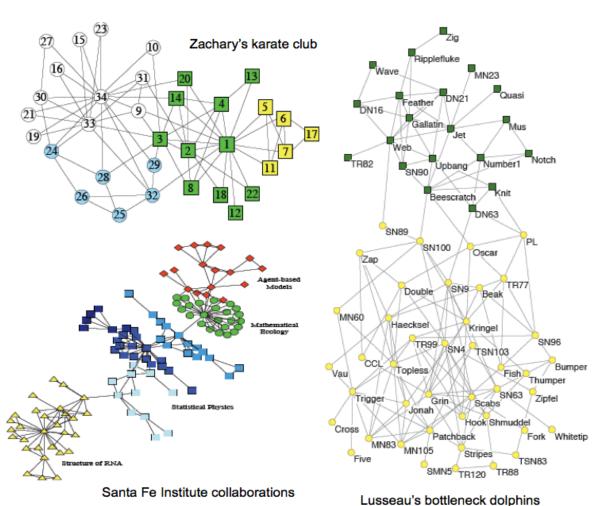
 Problema complejo y profundo: de dónde salen los sub-objetivos?



"Carving nature at its joints"



"Carving nature at its joints"



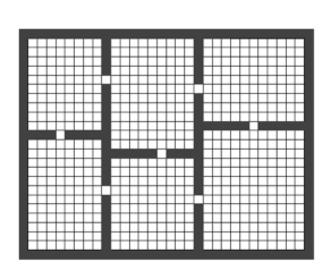
Node/vertex betweenness Max-flow / Min-cut Spectral clustering

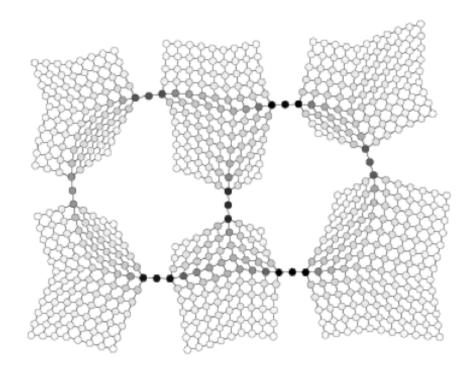
Betweenness

 Betweenness de v es la cantidad de caminos más cortos entre s y t que pasan por v, sobre la cantidad de caminos más cortos totales.

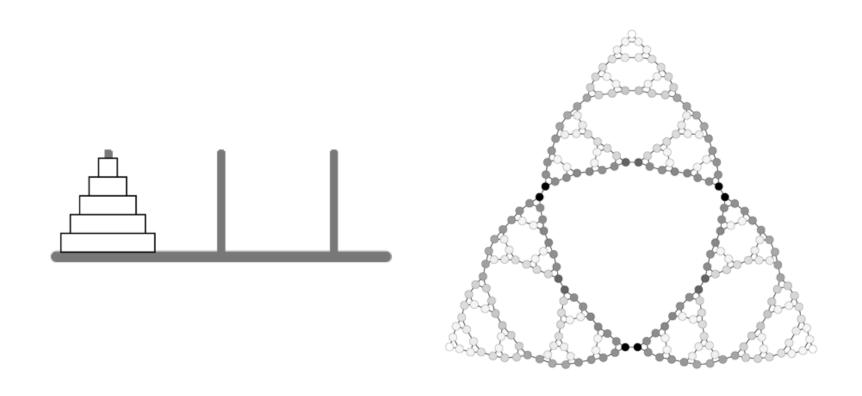
$$c_s(v) = \sum_{\forall t \neq v \neq s} \frac{\sigma_{st}(v)}{\sigma_{st}}.$$

Bottlenecks en AR

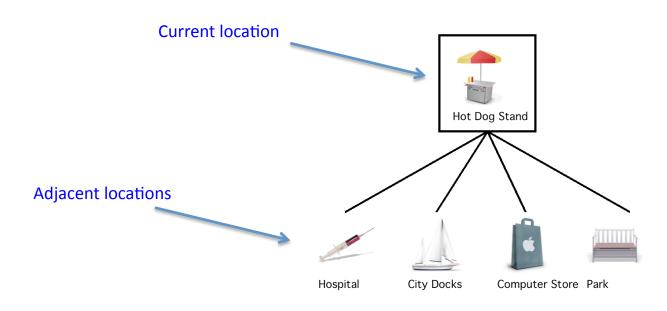




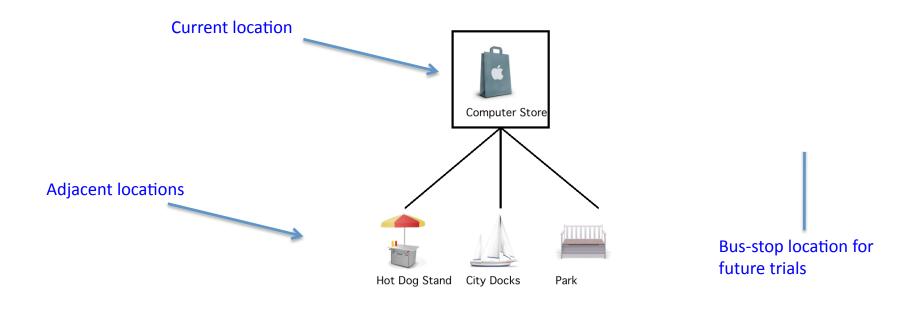
Bottlenecks en RL



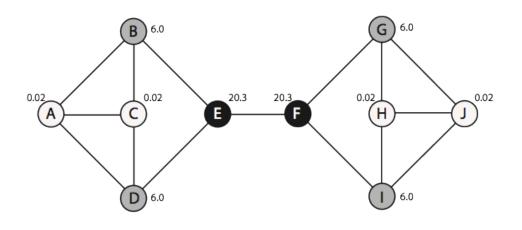
Identificando sub-objetivos

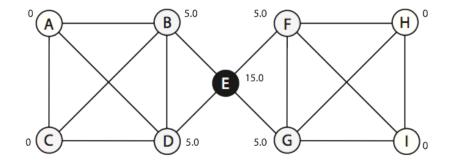


Identificando sub-objetivos



Mapas

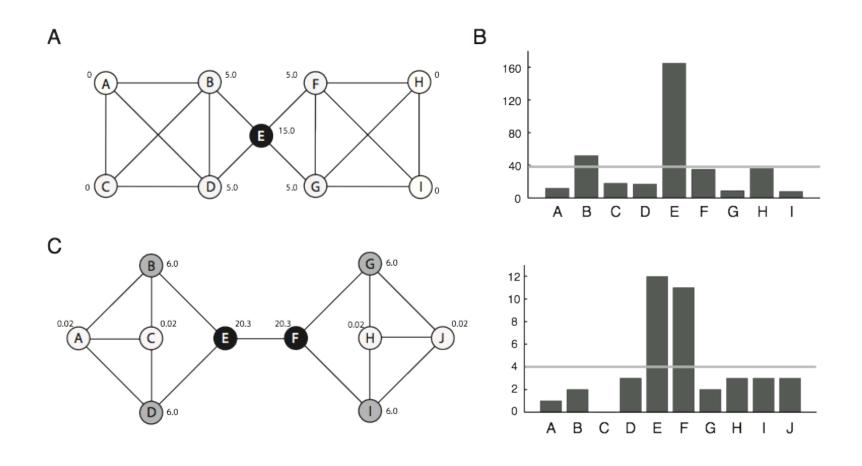




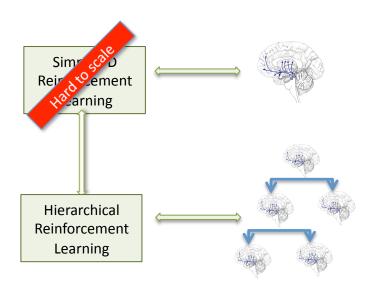
Recuerden:

Los participantes no tienen acceso al mapa de la ciudad, sólo la navegan.

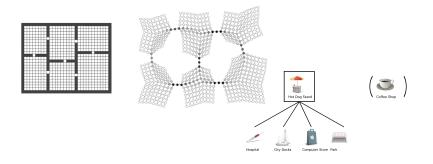
Elección de paradas de bondi



Resúmen



- Modelos de AR basados en TD explican comportamientos simples de AR en el cerebro.
- TD no escala a situaciones más complejas.
- Las jerarquías parecen ayudar.
- Creemos que los humanos piensan jerárquicamente.
- Modelamos tareas usando AR jerárquico, y verificamos algunas predicciones en el cerebro.
- Pregunta profunda: de dónde salen las jerarquías? Exploramos ideas de network analysis.



Cómo jugarías este juego?

Objetos en RL

Todavía falta...

 Creo que representaciones basadas en objetos y relaciones nos van a servir mucho.

- La percepción humana está especialmente preparada para identificar objetos.
- Sabemos muy poco sobre mecanismos de aprendizaje en el cerebro con estas representaciones.

Salud!